INTRODUCTION
TO
MACHINE LEARNING
1 Preliminaries 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 What is Machine Learning? . . . . . . . . . . . . . . . . . 1
1.1.2 Wellsprings of Machine Learning . . . . . . . . . . . . . . 3
1.1.3 Varieties of Machine Learning . . . . . . . . . . . . . . . . 4
1.2 Learning Input-Output Functions . . . . . . . . . . . . . . . . . . 5
1.2.1 Types of Learning . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Input Vectors . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.4 Training Regimes . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.5 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . 9
1.3 Learning Requires Bias . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Sample Applications . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Bibliographical and Historical Remarks . . . . . . . . . . . . . . 13
2 Boolean Functions 15
2.1 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.1 Boolean Algebra . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Diagrammatic Representations . . . . . . . . . . . . . . . 16
2.2 Classes of Boolean Functions . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Terms and Clauses . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 DNF Functions . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 CNF Functions . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.4 Decision Lists . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.5 Symmetric and Voting Functions . . . . . . . . . . . . . . 23
2.2.6 Linearly Separable Functions . . . . . . . . . . . . . . . . 23
2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Bibliographical and Historical Remarks . . . . . . . . . . . . . . 25
iii
3 Using Version Spaces for Learning 27
3.1 Version Spaces and Mistake Bounds . . . . . . . . . . . . . . . . 27
3.2 Version Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Learning as Search of a Version Space . . . . . . . . . . . . . . . 32
3.4 The Candidate Elimination Method . . . . . . . . . . . . . . . . 32
3.5 Bibliographical and Historical Remarks . . . . . . . . . . . . . . 34
4 Neural Networks 35
4.1 Threshold Logic Units . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.1 Definitions and Geometry . . . . . . . . . . . . . . . . . . 35
4.1.2 Special Cases of Linearly Separable Functions . . . . . . . 37
4.1.3 Error-Correction Training of a TLU . . . . . . . . . . . . 38
4.1.4 Weight Space . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.5 The Widrow-Hoff Procedure . . . . . . . . . . . . . . . . . 42
4.1.6 Training a TLU on Non-Linearly-Separable Training Sets 44
4.2 Linear Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Networks of TLUs . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.1 Motivation and Examples . . . . . . . . . . . . . . . . . . 46
4.3.2 Madalines . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.3 Piecewise Linear Machines . . . . . . . . . . . . . . . . . . 50
4.3.4 Cascade Networks . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Training Feedforward Networks by Backpropagation . . . . . . . 52
4.4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.2 The Backpropagation Method . . . . . . . . . . . . . . . . 53
4.4.3 Computing Weight Changes in the Final Layer . . . . . . 56
4.4.4 Computing Changes to the Weights in Intermediate Layers 58
4.4.5 Variations on Backprop . . . . . . . . . . . . . . . . . . . 59
4.4.6 An Application: Steering a Van . . . . . . . . . . . . . . . 60
4.5 Synergies Between Neural Network and Knowledge-Based Methods 61
4.6 Bibliographical and Historical Remarks . . . . . . . . . . . . . . 61
5 Statistical Learning 63
5.1 Using Statistical Decision Theory . . . . . . . . . . . . . . . . . . 63
5.1.1 Background and General Method . . . . . . . . . . . . . . 63
5.1.2 Gaussian (or Normal) Distributions . . . . . . . . . . . . 65
5.1.3 Conditionally Independent Binary Components . . . . . . 68
5.2 Learning Belief Networks . . . . . . . . . . . . . . . . . . . . . . 70
5.3 Nearest-Neighbor Methods . . . . . . . . . . . . . . . . . . . . . . 70
5.4 Bibliographical and Historical Remarks . . . . . . . . . . . . . . 72
iv
6 Decision Trees 73
6.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Supervised Learning of Univariate Decision Trees . . . . . . . . . 74
6.2.1 Selecting the Type of Test . . . . . . . . . . . . . . . . . . 75
6.2.2 Using Uncertainty Reduction to Select Tests . . . . . . . 75
6.2.3 Non-Binary Attributes . . . . . . . . . . . . . . . . . . . . 79
6.3 Networks Equivalent to Decision Trees . . . . . . . . . . . . . . . 79
6.4 Overfitting and Evaluation . . . . . . . . . . . . . . . . . . . . . 80
6.4.1 Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.4.2 Validation Methods . . . . . . . . . . . . . . . . . . . . . 81
6.4.3 Avoiding Overfitting in Decision Trees . . . . . . . . . . . 82
6.4.4 Minimum-Description Length Methods . . . . . . . . . . . 83
6.4.5 Noise in Data . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.5 The Problem of Replicated Subtrees . . . . . . . . . . . . . . . . 84
6.6 The Problem of Missing Attributes . . . . . . . . . . . . . . . . . 86
6.7 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.8 Bibliographical and Historical Remarks . . . . . . . . . . . . . . 87
7 Inductive Logic Programming 89
7.1 Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . 90
7.2 A Generic ILP Algorithm . . . . . . . . . . . . . . . . . . . . . . 91
7.3 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.4 Inducing Recursive Programs . . . . . . . . . . . . . . . . . . . . 98
7.5 Choosing Literals to Add . . . . . . . . . . . . . . . . . . . . . . 100
7.6 Relationships Between ILP and Decision Tree Induction . . . . . 101
7.7 Bibliographical and Historical Remarks . . . . . . . . . . . . . . 104
8 Computational Learning Theory 107
8.1 Notation and Assumptions for PAC Learning Theory . . . . . . . 107
8.2 PAC Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.2.1 The Fundamental Theorem . . . . . . . . . . . . . . . . . 109
8.2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.2.3 Some Properly PAC-Learnable Classes . . . . . . . . . . . 112
8.3 The Vapnik-Chervonenkis Dimension . . . . . . . . . . . . . . . . 113
8.3.1 Linear Dichotomies . . . . . . . . . . . . . . . . . . . . . . 113
8.3.2 Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.3.3 A More General Capacity Result . . . . . . . . . . . . . . 116
8.3.4 Some Facts and Speculations About the VC Dimension . 117
8.4 VC Dimension and PAC Learning . . . . . . . . . . . . . . . . . 118
8.5 Bibliographical and Historical Remarks . . . . . . . . . . . . . . 118
v
9 Unsupervised Learning 119
9.1 What is Unsupervised Learning? . . . . . . . . . . . . . . . . . . 119
9.2 Clustering Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 120
9.2.1 A Method Based on Euclidean Distance . . . . . . . . . . 120
9.2.2 A Method Based on Probabilities . . . . . . . . . . . . . . 124
9.3 Hierarchical Clustering Methods . . . . . . . . . . . . . . . . . . 125
9.3.1 A Method Based on Euclidean Distance . . . . . . . . . . 125
9.3.2 A Method Based on Probabilities . . . . . . . . . . . . . . 126
9.4 Bibliographical and Historical Remarks . . . . . . . . . . . . . . 130
10 Temporal-Difference Learning 131
10.1 Temporal Patterns and Prediction Problems . . . . . . . . . . . . 131
10.2 Supervised and Temporal-Difference Methods . . . . . . . . . . . 131
10.3 Incremental Computation of the (∆W)i
. . . . . . . . . . . . . . 134
10.4 An Experiment with TD Methods . . . . . . . . . . . . . . . . . 135
10.5 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 138
10.6 Intra-Sequence Weight Updating . . . . . . . . . . . . . . . . . . 138
10.7 An Example Application: TD-gammon . . . . . . . . . . . . . . . 140
10.8 Bibliographical and Historical Remarks . . . . . . . . . . . . . . 141
11 Delayed-Reinforcement Learning 143
11.1 The General Problem . . . . . . . . . . . . . . . . . . . . . . . . 143
11.2 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
11.3 Temporal Discounting and Optimal Policies . . . . . . . . . . . . 145
11.4 Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
11.5 Discussion, Limitations, and Extensions of Q-Learning . . . . . . 150
11.5.1 An Illustrative Example . . . . . . . . . . . . . . . . . . . 150
11.5.2 Using Random Actions . . . . . . . . . . . . . . . . . . . 152
11.5.3 Generalizing Over Inputs . . . . . . . . . . . . . . . . . . 153
11.5.4 Partially Observable States . . . . . . . . . . . . . . . . . 154
11.5.5 Scaling Problems . . . . . . . . . . . . . . . . . . . . . . . 154
11.6 Bibliographical and Historical Remarks . . . . . . . . . . . . . . 155
vi
12 Explanation-Based Learning 157
12.1 Deductive Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 157
12.2 Domain Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
12.3 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
12.4 Evaluable Predicates . . . . . . . . . . . . . . . . . . . . . . . . . 162
12.5 More General Proofs . . . . . . . . . . . . . . . . . . . . . . . . . 164
12.6 Utility of EBL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
12.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
12.7.1 Macro-Operators in Planning . . . . . . . . . . . . . . . . 164
12.7.2 Learning Search Control Knowledge . . . . . . . . . . . . 167
12.8 Bibliographical and Historical Remarks . . . . . . . . . . . . . . 168
Subscribe to:
Post Comments (Atom)
Speech and Language Processing An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition
Speech and Language Processing An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition Third Editi...
-
Chapter 1 Language Processing and Python 1 Chapter 2 Accessing Text Corpora and Lexical Resources 39 Chapter 3 Processing Raw Text 79 Chapt...
-
Contents III Data Preparation 34 IV BagofWords 61 V Word Embeddings 114 VI Text Classification 144 VII Language Modeling 189 VIII Image Ca...
-
Part I. The Fundamentals of Machine Learning 1. The Machine Learning Landscape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
No comments:
Post a Comment