Friday 30 November 2018
Machine Learning For Dummies
Table of Contents INTRODUCTION............................................................................................... 1 About This Book ................................................................................... 1 Foolish Assumptions............................................................................ 2 Icons Used in This Book....................................................................... 2 CHAPTER 1: Understanding Machine Learning................................. 3 What Is Machine Learning? ................................................................. 4 Iterative learning from data........................................................... 5 What’s old is new again.................................................................. 5 Defining Big Data.................................................................................. 6 Big Data in Context with Machine Learning...................................... 7 The Need to Understand and Trust your Data................................. 8 The Importance of the Hybrid Cloud................................................. 9 Leveraging the Power of Machine Learning ..................................... 9 Descriptive analytics.....................................................................10 Predictive analytics .......................................................................10 The Roles of Statistics and Data Mining with Machine Learning...............................................................................11 Putting Machine Learning in Context ..............................................12 Approaches to Machine Learning ....................................................14 Supervised learning......................................................................15 Unsupervised learning .................................................................15 Reinforcement learning ...............................................................16 Neural networks and deep learning...........................................17 CHAPTER 2: Applying Machine Learning ..............................................19 Getting Started with a Strategy.........................................................19 Using machine learning to remove biases from strategy........20 More data makes planning more accurate ...............................22 Understanding Machine Learning Techniques...............................22 Tying Machine Learning Methods to Outcomes ............................23 Applying Machine Learning to Business Needs..............................23 Understanding why customers are leaving...............................24 Recognizing who has committed a crime ..................................25 Preventing accidents from happening.......................................26 iv Machine Learning For Dummies, IBM Limited Edition These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited. CHAPTER 3: Looking Inside Machine Learning................................27 The Impact of Machine Learning on Applications..........................28 The role of algorithms..................................................................28 Types of machine learning algorithms.......................................29 Training machine learning systems............................................33 Data Preparation................................................................................34 Identify relevant data ...................................................................34 Governing data..............................................................................36 The Machine Learning Cycle .............................................................37 CHAPTER 4: Getting Started with Machine Learning.................39 Understanding How Machine Learning Can Help..........................39 Focus on the Business Problem .......................................................40 Bringing data silos together ........................................................41 Avoiding trouble before it happens............................................42 Getting customer focused ...........................................................43 Machine Learning Requires Collaboration......................................43 Executing a Pilot Project....................................................................44 Step 1: Define an opportunity for growth..................................44 Step 2: Conducting a pilot project...............................................44 Step 3: Evaluation .........................................................................45 Step 4: Next actions......................................................................45 Determining the Best Learning Model ............................................46 Tools to determine algorithm selection.....................................46 Approaching tool selection..........................................................47 CHAPTER 5: Learning Machine Skills .......................................................49 Defining the Skills That You Need ....................................................49 Getting Educated................................................................................53 IBM-Recommended Resources ........................................................56 CHAPTER 6: Using Machine Learning to Provide Solutions to Business Problems ....................................57 Applying Machine Learning to Patient Health ................................57 Leveraging IoT to Create More Predictable Outcomes..................58 Proactively Responding to IT Issues.................................................59 Protecting Against Fraud...................................................................60 CHAPTER 7: Ten Predictions on the Future of Machine Learning...............................................................63
Subscribe to:
Posts (Atom)
Speech and Language Processing An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition
Speech and Language Processing An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition Third Editi...
-
Contents III Data Preparation 34 IV BagofWords 61 V Word Embeddings 114 VI Text Classification 144 VII Language Modeling 189 VIII Image Ca...
-
Chapter 1 Language Processing and Python 1 Chapter 2 Accessing Text Corpora and Lexical Resources 39 Chapter 3 Processing Raw Text 79 Chapt...
-
Part I. The Fundamentals of Machine Learning 1. The Machine Learning Landscape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...